Magnetic InxGa1 - xN nanowires at room temperature using Cu dopant and annealing

نویسندگان

  • Youn Ho Park
  • Ryong Ha
  • Tea-Eon Park
  • Sung Wook Kim
  • Dongjea Seo
  • Heon-Jin Choi
چکیده

Single-crystal, Cu-doped In x Ga1 - x N nanowires were grown on GaN/Al2O3 substrates via a vapor-liquid-solid (VLS) mechanism using Ni/Au bi-catalysts. The typical diameter of the Cu:In x Ga1 - x N nanowires was 80 to 150 nm, with a typical length of hundreds of micrometers. The as-grown nanowires exhibited diamagnetism. After annealing, the nanowires exhibited ferromagnetism with saturation magnetic moments higher than 0.8 μB (1 μB × 10(-24) Am(2)) per Cu atom at room temperature by the measurements using a superconducting quantum interference device (SQUID) magnetometer. X-ray absorption and X-ray magnetic circular dichroism spectra at Cu L 2,3-edges indicated that the doped Cu had a local magnetic moment and that its electronic configuration was mainly 3d (9). It possessed a small trivalent component, and thus, the n-type behavior of electrical property is measured at room temperature.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Investigations of Magnetic Properties Through Electrodeposition Current and Controlled Cu Content in Pulse Electrodeposited CoFeCu Nanowires

CoFeCu nanowires were deposited by pulsed electrodeposition technique into the porous alumina templates by a two-step mild anodization technique, using the single-bath method. The electrodeposition was performed in a constant electrolyte while Cu constant was controlled by electrodeposition current. The electrodeposition current was 3.5, 4.25, 5 and 6 mA. The effect of electrodeposition current...

متن کامل

CoFe Layers Thickness and Annealing Effect on the Magnetic Behavior of the CoFe/Cu Multilayer Nanowires

CoFe/Cu multilayer nanowires were electrodeposited into anodic aluminum oxide templates prepared by a two-step mild anodization method, using the single-bath technique. Nanowires with 30 nm diameter and the definite lengths were obtained. The effect of CoFe layers thickness and annealing on the magnetic behavior of the multilayer nanowires was investigated. The layers thickness was controlled t...

متن کامل

Effect of Thermal Annealing in Ammonia on the Properties of InGaN Nanowires with Different Indium Concentrations

The utility of an annealing procedure in ammonia ambient is investigated for improving the optical characteristics of InxGa1−xN nanowires (0.07 ≤ x ≤ 0.42) grown on c-Al2O3 using a halide chemical vapor deposition method. Morphological studies using scanning electron microscopy confirm that the nanowire morphology is retained after annealing in ammonia at temperatures up to 800 °C. However, sig...

متن کامل

Growth model for plasma-assisted molecular beam epitaxy of N-polar and Ga-polar InxGa1−xN

The authors have developed a comprehensive model for the growth of N-polar and Ga-polar InxGa1−xN by N2 plasma-assisted molecular beam epitaxy. GaN films of both polarities were coloaded and InxGa1−xN was grown in the composition range of 0.14 x 0.59 at different growth temperatures keeping all other conditions identical. The compositions were estimated by triple-axis -2 x-ray diffraction scans...

متن کامل

Growth of In2O3 Nanowires Catalyzed by Cu via a Solid–Liquid–Solid Mechanism

In2O3 nanowires that are 10-50 nm in diameter and several hundred nanometers to micrometers in length have been synthesized by simply annealing Cu-In compound at a relatively low temperature of 550°C. The catalysis of Cu on the growth of In2O3 nanowires is investigated. It is believed that the growth of In2O3 nanowires is via a solid-liquid-solid (SLS) mechanism. Moreover, photoluminescence (PL...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2015